011 多线程问题

文章目录

  • 死锁
    • 死锁的产生
    • 更复杂的死锁
    • 数据库的死锁
    • 死锁的避免
      • 加锁顺序
      • 加锁时限
      • 死锁检测
  • 饥饿和公平
    • Java中导致饥饿的原因
      • 高优先级线程吞噬所有的低优先级线程的CPU时间
      • 线程被永久堵塞在一个等待进入同步块的状态
      • 线程在等待一个本身(在其上调用wait())也处于永久等待完成的对象

死锁

死锁的产生

死锁是两个或更多线程阻塞着等待其它处于死锁状态的线程所持有的锁。死锁通常发生在多个线程同时但以不同的顺序请求同一组锁的时候。
例如,如果线程1锁住了A,然后尝试对B进行加锁,同时线程2已经锁住了B,接着尝试对A进行加锁,这时死锁就发生了。线程1永远得不到B,线程2也永远得不到A,并且它们永远也不会知道发生了这样的事情。为了得到彼此的对象(A和B),它们将永远阻塞下去。这种情况就是一个死锁。
该情况如下:


Thread 1 locks A, waits for B
Thread 2 locks B, waits for

更复杂的死锁

死锁可能不止包含2个线程,这让检测死锁变得更加困难。下面是4个线程发生死锁的例子:


Thread 1 locks A, waits for B
Thread 2 locks B, waits for C
Thread 3 locks C, waits for D
Thread 4 locks D, waits for A

线程1等待线程2,线程2等待线程3,线程3等待线程4,线程4等待线程1。

数据库的死锁

更加复杂的死锁场景发生在数据库事务中。一个数据库事务可能由多条SQL更新请求组成。当在一个事务中更新一条记录,这条记录就会被锁住避免其他事务的更新请求,直到第一个事务结束。同一个事务中每一个更新请求都可能会锁住一些记录。
当多个事务同时需要对一些相同的记录做更新操作时,就很有可能发生死锁,例如:

Transaction 1, request 1, locks record 1 for update
Transaction 2, request 1, locks record 2 for update
Transaction 1, request 2, tries to lock record 2 for update.
Transaction 2, request 2, tries to lock record 1 for update.

因为锁发生在不同的请求中,并且对于一个事务来说不可能提前知道所有它需要的锁,因此很难检测和避免数据库事务中的死锁。

死锁的避免

加锁顺序

当多个线程需要相同的一些锁,但是按照不同的顺序加锁,死锁就很容易发生。
如果能确保所有的线程都是按照相同的顺序获得锁,那么死锁就不会发生。看下面这个例子:

Thread 1:
lock A
lock B

Thread 2:
wait for A
lock C (when A locked)

Thread 3:
wait for A
wait for B
wait for C

如果一个线程(比如线程3)需要一些锁,那么它必须按照确定的顺序获取锁。它只有获得了从顺序上排在前面的锁之后,才能获取后面的锁。
例如,线程2和线程3只有在获取了锁A之后才能尝试获取锁C(注:获取锁A是获取锁C的必要条件)。因为线程1已经拥有了锁A,所以线程2和3需要一直等到锁A被释放。然后在它们尝试对B或C加锁之前,必须成功地对A加了锁。
按照顺序加锁是一种有效的死锁预防机制。但是,这种方式需要你事先知道所有可能会用到的锁(注:并对这些锁做适当的排序),但总有些时候是无法预知的。

加锁时限

另外一个可以避免死锁的方法是在尝试获取锁的时候加一个超时时间,这也就意味着在尝试获取锁的过程中若超过了这个时限该线程则放弃对该锁请求。若一个线程没有在给定的时限内成功获得所有需要的锁,则会进行回退并释放所有已经获得的锁,然后等待一段随机的时间再重试。这段随机的等待时间让其它线程有机会尝试获取相同的这些锁,并且让该应用在没有获得锁的时候可以继续运行(注:加锁超时后可以先继续运行干点其它事情,再回头来重复之前加锁的逻辑)。
以下是一个例子,展示了两个线程以不同的顺序尝试获取相同的两个锁,在发生超时后回退并重试的场景:

Thread 1 locks A
Thread 2 locks B

Thread 1 attempts to lock B but is blocked
Thread 2 attempts to lock A but is blocked

Thread 1's lock attempt on B times out
Thread 1 backs up and releases A as well
Thread 1 waits randomly (e.g. 257 millis) before retrying.

Thread 2's lock attempt on A times out
Thread 2 backs up and releases B as well
Thread 2 waits randomly (e.g. 43 millis) before retrying.

在上面的例子中,线程2比线程1早200毫秒进行重试加锁,因此它可以先成功地获取到两个锁。这时,线程1尝试获取锁A并且处于等待状态。当线程2结束时,线程1也可以顺利的获得这两个锁(除非线程2或者其它线程在线程1成功获得两个锁之前又获得其中的一些锁)。
需要注意的是,由于存在锁的超时,所以我们不能认为这种场景就一定是出现了死锁。也可能是因为获得了锁的线程(导致其它线程超时)需要很长的时间去完成它的任务。

此外,如果有非常多的线程同一时间去竞争同一批资源,就算有超时和回退机制,还是可能会导致这些线程重复地尝试但却始终得不到锁。如果只有两个线程,并且重试的超时时间设定为0到500毫秒之间,这种现象可能不会发生,但是如果是10个或20个线程情况就不同了。因为这些线程等待相等的重试时间的概率就高的多(或者非常接近以至于会出现问题)。

这种机制存在一个问题,在Java中不能对synchronized同步块设置超时时间。你需要创建一个自定义锁,或使用Java5中java.util.concurrent包下的工具。

死锁检测

死锁检测是一个更好的死锁预防机制,它主要是针对那些不可能实现按序加锁并且锁超时也不可行的场景。

每当一个线程获得了锁,会在线程和锁相关的数据结构中(map、graph等等)将其记下。除此之外,每当有线程请求锁,也需要记录在这个数据结构中。

当一个线程请求锁失败时,这个线程可以遍历锁的关系图看看是否有死锁发生。例如,线程A请求锁7,但是锁7这个时候被线程B持有,这时线程A就可以检查一下线程B是否已经请求了线程A当前所持有的锁。如果线程B确实有这样的请求,那么就是发生了死锁(线程A拥有锁1,请求锁7;线程B拥有锁7,请求锁1)。

当然,死锁一般要比两个线程互相持有对方的锁这种情况要复杂的多。线程A等待线程B,线程B等待线程C,线程C等待线程D,线程D又在等待线程A。线程A为了检测死锁,它需要递进地检测所有被B请求的锁。从线程B所请求的锁开始,线程A找到了线程C,然后又找到了线程D,发现线程D请求的锁被线程A自己持有着。这是它就知道发生了死锁。

那么当检测出死锁时,这些线程该做些什么呢?
一个可行的做法是释放所有锁,回退,并且等待一段随机的时间后重试。这个和简单的加锁超时类似,不一样的是只有死锁已经发生了才回退,而不会是因为加锁的请求超时了。虽然有回退和等待,但是如果有大量的线程竞争同一批锁,它们还是会重复地死锁(注:原因同超时类似,不能从根本上减轻竞争)。

一个更好的方案是给这些线程设置优先级,让一个(或几个)线程回退,剩下的线程就像没发生死锁一样继续保持着它们需要的锁。如果赋予这些线程的优先级是固定不变的,同一批线程总是会拥有更高的优先级。为避免这个问题,可以在死锁发生的时候设置随机的优先级。

饥饿和公平

如果一个线程因为CPU时间全部被其他线程抢走而得不到CPU运行时间,这种状态被称之为“饥饿”。而该线程被“饥饿致死”正是因为它得不到CPU运行时间的机会。解决饥饿的方案被称之为“公平性” –即所有线程均能公平地获得运行机会。

Java中导致饥饿的原因

在Java中,下面三个常见的原因会导致线程饥饿:

高优先级线程吞噬所有的低优先级线程的CPU时间

你能为每个线程设置独自的线程优先级,优先级越高的线程获得的CPU时间越多,线程优先级值设置在1到10之间,而这些优先级值所表示行为的准确解释则依赖于你的应用运行平台。对大多数应用来说,你最好是不要改变其优先级值。

线程被永久堵塞在一个等待进入同步块的状态

Java的同步代码区也是一个导致饥饿的因素。Java的同步代码区对哪个线程允许进入的次序没有任何保障。这就意味着理论上存在一个试图进入该同步区的线程处于被永久堵塞的风险,因为其他线程总是能持续地先于它获得访问,这即是“饥饿”问题,而一个线程被“饥饿致死”正是因为它得不到CPU运行时间的机会。

线程在等待一个本身(在其上调用wait())也处于永久等待完成的对象

如果多个线程处在wait()方法执行上,而对其调用notify()不会保证哪一个线程会获得唤醒,任何线程都有可能处于继续等待的状态。因此存在这样一个风险:一个等待线程从来得不到唤醒,因为其他等待线程总是能被获得唤醒。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/776669.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

昇思25天学习打卡营第18天|Pix2Pix实现图像转换

Pix2Pix概述 Pix2Pix是基于条件生成对抗网络实现的一种深度学习图像转换模型。Pix2Pix是将cGAN应用于有监督的图像到图像翻译,包括生成器和判别器。 基础原理 cGAN的生成器是将输入图片作为指导信息,由输入图像不断尝试生成用于迷惑判别器的“假”图像…

c++ 附赠课程的知识点记录

(1) 静态变量的赋值 再一个例子: (2) 一般在定义类的赋值运算符函数时, operator ( const A& a ) 函数,应避免自赋值的情况,就是把对象 a 又赋值给 对象a 如同 a a 这样的情况…

类和对象深入理解

目录 static成员概念静态成员变量面试题补充代码1代码2代码3如何访问private中的成员变量 静态成员函数静态成员函数没有this指针 特性 友元友元函数友元类 内部类特性1特性2 匿名对象拷贝对象时的一些编译器优化 感谢各位大佬对我的支持,如果我的文章对你有用,欢迎点击以下链接…

C++ | Leetcode C++题解之第217题存在重复元素

题目&#xff1a; 题解&#xff1a; class Solution { public:bool containsDuplicate(vector<int>& nums) {unordered_set<int> s;for (int x: nums) {if (s.find(x) ! s.end()) {return true;}s.insert(x);}return false;} };

【PB案例学习笔记】-27制作一个控制任务栏显示与隐藏的小程序

写在前面 这是PB案例学习笔记系列文章的第27篇&#xff0c;该系列文章适合具有一定PB基础的读者。 通过一个个由浅入深的编程实战案例学习&#xff0c;提高编程技巧&#xff0c;以保证小伙伴们能应付公司的各种开发需求。 文章中设计到的源码&#xff0c;小凡都上传到了gite…

视频参考帧和重构帧复用

1、 视频编码中的参考帧和重构帧 从下图的编码框架可以看出&#xff0c;每编码一帧需要先使用当前帧CU(n)减去当前帧的参考帧CU&#xff08;n&#xff09;得到残差。同时&#xff0c;需要将当前帧的重构帧CU*&#xff08;n&#xff09;输出&#xff0c;然后再读取重构帧进行预测…

Pandas数据可视化详解:大案例解析(第27天)

系列文章目录 Pandas数据可视化解决不显示中文和负号问题matplotlib数据可视化seaborn数据可视化pyecharts数据可视化优衣库数据分析案例 文章目录 系列文章目录前言1. Pandas数据可视化1.1 案例解析&#xff1a;代码实现 2. 解决不显示中文和负号问题3. matplotlib数据可视化…

HTTP代理服务器:深度解析与应用

“随着互联网的飞速发展&#xff0c;HTTP代理服务器在网络通信中扮演着越来越重要的角色。它们作为客户端和服务器之间的中介&#xff0c;不仅优化了网络性能&#xff0c;还提供了强大的安全性和隐私保护功能。” 一、HTTP代理服务器的概念与作用 HTTP代理服务器是一种能够接…

Qt扫盲-QRect矩形描述类

QRect矩形描述总结 一、概述二、常用函数1. 移动类2. 属性函数3. 判断4. 比较计算 三、渲染三、坐标 一、概述 QRect类使用整数精度在平面中定义一个矩形。在绘图的时候经常使用&#xff0c;作为一个二维的参数描述类。 一个矩形主要有两个重要属性&#xff0c;一个是坐标&am…

前端面试题16(跨域问题)

跨域问题源于浏览器的同源策略&#xff08;Same-origin policy&#xff09;&#xff0c;这一策略限制了来自不同源的“写”操作&#xff08;比如更新、删除数据等&#xff09;&#xff0c;同时也限制了读操作。当一个网页尝试请求与自身来源不同的资源时&#xff0c;浏览器会阻…

设计模式探索:代理模式

1. 什么是代理模式 定义 代理模式是一种结构型设计模式&#xff0c;通过为其他对象提供一种代理以控制对这个对象的访问。代理对象在客户端和实际对象之间起到中介作用&#xff0c;可以在不改变真实对象的情况下增强或控制对真实对象的访问。 目的 代理模式的主要目的是隐…

着急,为啥AI叫好不叫座啊?

关注卢松松&#xff0c;会经常给你分享一些我的经验和观点。 李彦宏在2024世界人工智能大会上说&#xff1a; 没有应用&#xff0c;光有基础模型&#xff0c;不管是开源还是闭源都一文不值&#xff0c;所以我从去年下半年开始讲&#xff0c;大家不要卷模型了&#xff0c;要去…

MySQL---事务管理

1.关于事务 理解和学习事务&#xff0c;不能只站在程序猿的角度来理解事务&#xff0c;而是要站在使用者&#xff08;用户&#xff09;的角度来理解事务。 比如支付宝转账&#xff0c;A转了B100块前&#xff0c;在程序猿的角度来看&#xff0c;是两条update操作&#xff0c;A …

PCDN技术如何提高内容分发效率?(贰)

PCDN技术通过以下方式提高内容分发效率: 1.利用用户设备作为分发节点:与传统的 CDN技术主要依赖中心化服务器不同&#xff0c; PCDN技术利用用户的设备作为内容分发的节点。当用户下载内容时&#xff0c;他们的设备也会成为内容分发的一部分&#xff0c;将已下载的内容传递给其…

项目部署_持续集成_Jenkins

1 今日内容介绍 1.1 什么是持续集成 持续集成&#xff08; Continuous integration &#xff0c; 简称 CI &#xff09;指的是&#xff0c;频繁地&#xff08;一天多次&#xff09;将代码集成到主干 持续集成的组成要素 一个自动构建过程&#xff0c; 从检出代码、 编译构建…

树状数组实现 查找逆序对

题意&#xff1a; 输入一个整数n。 接下来输入一行n个整数 。 1< < n ,且每个数字只会出现一次 题解&#xff1a; 按每个数字的大小存入树状数组 #include<bits/stdc.h> using namespace std; #define ll long long const int N10000; int arr[N]; ll a[N];…

Java中关于构造代码块和静态代码块的解析

构造代码块 特点&#xff1a;优先于构造方法执行,每new一次,就会执行一次 public class Person {public Person(){System.out.println("我是无参构造方法");}{System.out.println("我是构造代码块"); //构造代码块} }public class Test {public stati…

golang与以太坊交互

文章目录 golang与以太坊交互什么是go-ethereum与节点交互前的准备使用golang与以太坊区块链交互查询账户的余额使用golang生成以太坊账户使用golang生成以太坊钱包使用golang在账户之间转移eth安装使用solc和abigen生成bin和abi文件生成go文件使用golang在测试网上部署智能合约…

GD32MCU如何实现掉电数据保存?

大家在GD32 MCU应用时&#xff0c;是否会碰到以下应用需求&#xff1a;希望在MCU掉电时保存一定的数据或标志&#xff0c;用以记录一些关键的数据。 以GD32E103为例&#xff0c;数据的存储介质可以选择内部Flash或者备份数据寄存器。 如下图所示&#xff0c;片内Flash具有10年…

【综合能源】计及碳捕集电厂低碳特性及需求响应的综合能源系统多时间尺度调度模型

目录 1 主要内容 2 部分程序 3 实现效果 4 下载链接 1 主要内容 本程序是对《计及碳捕集电厂低碳特性的含风电电力系统源-荷多时间尺度调度方法》方法复现&#xff0c;非完全复现&#xff0c;只做了日前日内部分&#xff0c;并在上述基础上改进升级为电热综合电源微网系统&…